
Convention over Configuration

The Universal Remote: Powerful, but requires too much configuring

Intent

Design a framework so that it enforces standard naming conventions for mapping classes to
resources or events. A programmer only needs to write the mapping configurations when the
naming convention fails.

Motivation

General-purpose frameworks usually require one or more configuration files in order to set up the
framework. A configuration file provides a mapping between a class and a resource (a database) or
an event (a URL request). As the size and complexity of applications grow, so do the configuration
files, making them harder to maintain.

Below is an example1 showing a typical configuration file.

Convention Over Configuration

1

<hibernate-mapping>
<class name="User" table="users">
 <id name="ID" column="id" type="string">
 <generator class="assigned"></generator>
 </id>
 <property name="password" column="password" type="string" />
</class>
</hibernate-mapping>

Figure 1: A Hibernate mapping definition

CREATE TABLE users (
 id VARCHAR(20) NOT NULL,
 password VARCHAR(20),
 PRIMARY KEY(id)
);

Figure 2: The Users table in the database

Figure 1 above shows a mapping file for Hibernate5, an object/relational persistence and query
service framework for Java. The Hibernate mapping definition in Figure 1 maps the User class to the
Users table in the database. The Users table in the database is described in Figure 2 using SQL.
The fields of class User are also mapped to the columns in the Users table.

Hibernate uses the configuration file in Figure 1 to map objects to the database. For instance, if we
create an object Alice of type User, calling Alice.getId() will actually perform a lookup to the
relevant row in the Users database table and retrieve the information in the id column.

Modifying configuration files, usually in XML, is tedious and also error-prone. Most errors in
configuration files are only detected at runtime in the form of a runtime error, usually a
ClassNotFoundException. More importantly, a lot of the mapping information can be inferred
easily from the structure of the database table without the need for any configuration.

For instance, we can set up the naming convention that:

. 1 Database table names should be the pluralized form of the class name.

. 2 The columns in a database table should have identical names with the fields in the class that
it maps to.

These two naming conventions are natural. As can be seen above, the configuration file is indeed
echoing the convention. In fact, most developers already adhere to certain naming conventions
when they program. The Convention over Configuration pattern rewards developers for adhering to
naming conventions and enforces this in a stricter manner by building it into the framework.

When the designer of a framework establishes a standard naming convention, there is little need for
the configuration file. The framework has code that will invoke the relevant classes or methods
based on their names. In this example, the framework queries the table for the table name and the
names of the fields when a method is invoked. And if the corresponding class does not have a
corresponding field for a column name, when we access it for the first time we get a runtime error.
This is no different from getting a runtime error in the event that we specified the configuration file
wrongly.

The Convention over Configuration pattern reduces the amount of configuration by establishing a
set of naming conventions that developers follow.

Applicability

As the designer of a framework, use the Convention over Configuration pattern when

there are clear and practical naming conventions that can be established between parts of
the framework.
there is the opportunity to reduce the amount of configuration files that duplicate mapping
information from other parts of the system.

Convention Over Configuration

2

The Convention over Configuration pattern does not preclude the need for configuration files.
Configuration files are still important for the cases where convention fails. But for most cases,
sticking to the conventions works and keeps things simple for the programmer and anyone reading
the code.

Whenever a configuration property is set explicitly, that property overrides the underlying naming
convention. Thus the framework is still fully configurable.

The configurations can be specified in a separate file (shown in Figure 1) or the configurations may
be embodied in the code, as we shall in the Sample Code section.

Consequences

The Convention over Configuration pattern has the following benefits and liabilities:

. 1 + Allows new developers to learn a system quickly. Once developers understand the naming
convention, they can quickly start developing without worrying about writing the
configurations to make things work. This gives developers the impression that the framework

Works Out of the Box15with little or no configuration. Frameworks that work out of the box
empowers developers to quickly create prototypes for testing. Compare this to frameworks
that require multiple configuration files to get the system up and running even for simple
tasks. After they have become more familiar with the framework, they can write
configurations for the unconventional cases.

. 2 + Promotes uniformity. Developers working on different projects but using the same
framework can quickly grasp how different systems work since the same naming conventions

are promoted throughout the framework. This helps in maintaining a ubiquitous language3

for the development team.

. 3 + Better dynamism. Changing the name of the class or method in the source code does not
require modifying a configuration file. Since the framework does not rely on static
configuration files, but rather enforces the naming conventions during runtime, changes
made are automatically propagated through the application.

“This is the problem with conventions – they have to be continually resold to
each developer. If the developer has not learned the convention, or does not
agree with it, then the convention will be violated. And one violation can

compromise the whole structure.” -Robert C. Martin2”

. 4 - Requires familiarity. The naming conventions become part of the implicit knowledge of the
framework. Once a set of conventions has been established, it becomes hard to change
them. In fact, not following those conventions makes the system harder to use. Naming
conventions have to be included in the documentation and followed consistently in code
samples to avoid confusion.

. 5 - Larger framework. By shifting the responsibility of configuration from the developer, the
framework itself has to enforce those conventions; the set of conventions has to be baked
into the framework. If there are a large number of conventions that need to be supported,
the framework becomes larger. Thus, only enforce clear and practical naming conventions in
the framework itself.

. 6 - Hard to refactor existing frameworks to adopt a new naming convention. It might not be
feasible to use Convention over Configuration when an existing framework has a large group
of developers using it. There are currently no automated tools that can upgrade an
application to use features in a newer version of the framework. So developers using a
version of the framework that used an older convention cannot upgrade easily to a newer
convention. The Convention over Configuration pattern is best used during the initial creation
of the framework and maintained throughout updates to the framework.

Convention Over Configuration

3

Usage

The naming convention should be distilled from the ubiquitous language3 if one exists. The naming
convention can also be distilled from existing applications if the framework has been designed using

the Three Examples14 pattern.

As the framework evolves, existing naming conventions may have to be modified or new naming
conventions have to be added. This set of naming conventions has to be promoted to all the
developers that are using the framework. Then, as the designers of the framework, enforce this set
of conventions as part of the framework. Enforcing the naming convention is done using the
reflection and metaprogramming properties of the programming language.

Also, design the framework to accommodate for the ability for developers to configure if the
conventions do not fit.

Sample code

Suppose that we wanted to define a simple validator for some of our classes. We will make use of
Convention over Configuration to do this. First, we define a set of naming conventions. If our class
is called Cat, the validator will be called CatsValidator. We pluralize the class name and append
the word “Validator” to it. Second, in the CatsValidator class, methods for validating are called
valid_x where x can be any word. Those are our naming conventions.

We will be using the Ruby programming language to define the classes since it supports reflection
and metaprogramming with a clean syntax.

class NamesValidator

 # Checks that first_name and last_name are within certain length
 def self.valid_length?(name)
 name.first_name.length < 20 and name.last_name.length < 10
 end

 # Checks that first_name and last_name have the first character capitalized
 # capitalize turns HELLO into Hello; hello into Hello; etc
 def self.valid_case?(name)
 name.first_name == name.first_name.capitalize and
 name.last_name == name.last_name.capitalize
 end

 def self.non_conforming_method
 # This method will not be called during validation
 end

end

class Name < Validatable

 attr_accessor :first_name, :last_name # create getters and setters for instanc
e variable name

 def initialize(first_name, last_name)
 @first_name, @last_name = first_name, last_name
 end

end

Figure 3: Name class and the NamesValidator class

Name is just a simple class that has two fields: first_name and last_name. The NamesValidator
has two class methods that check if the name is of valid length and if it has the right case. The
method non_conforming_method is left there to show that our validation system does not call that

Convention Over Configuration

4

method since it does not conform to the naming convention we agreed upon.

class Validatable

 # Uses metaprogramming to construct a new validator
 def validate
 unless @validator
 validator = instance_eval(self.class + 's' + "Validator")
 validator.methods.grep /^valid_/ do |m| # find methods like valid_x
 # call the method and passes in this object as an argument
 # puts an error if that method did not validate
 puts "Method " + m + " failed" unless validator.send(m, self)
 end
 else
 validator = instance_eval(@validator)
 validator.methods.grep /^valid_/ do |m|
 puts "Method " + m + " failed" unless validator.send(m, self)
 end
 end
 end

end

Figure 4: The base class that enforces the Convention over Configuration

This is the conventional case: if the validator instance variable is not given an explicit value (by
default, it is nil), the validate method constructs a new Validator based on the name of the
current class. It then searches for methods that have the name valid_x and calls them using the
send method. If the validation fails, then a message telling the name of the failing method will be
printed.

name = Name.new("Nicholas", "Chen")
name.validate # produces nothing

name = Name.new("Nicholas", "chen")
name.validate # produces Method valid_case? failed

Figure 5: Result of validating two Name objects

This is the configuration case: if the validator instance variable is defined, then the validate
method uses that for the class name of the Validator.

class GroceriesValidator

 # Checks the weight
 def self.valid_weight?(grocery)
 grocery.weight < 50
 end

 # Checks the size
 def self.valid_size?(grocery)
 grocery.size < 10
 end

 def some_other_method
 # Not used in this case
 end

end

class Grocery < Validatable

Convention Over Configuration

5

 attr_accessor :weight, :size

 def initialize(weight, size)
 @weight, @size = weight, size
 @validator = "GroceriesValidator" # The validator is defined here
 end

end

Figure 6: Grocery class and the GroceriesValidator

Because the plural of the word “grocery” is “groceries” our simple convention cannot take care of it.
So we have to explicitly specify a mapping by giving the instance variable validator the valid
Validator class name.

grocery = Grocery.new(30,20)
grocery.validate #produces Method valid_size? failed

Figure 7: Result of validating an invalid Grocery object

Known Uses

Ruby on Rails. One of the driving forces behind the Convention over Configuration pattern is the

Ruby on Rails10 framework. Ruby on Rails, or just Rails, is an open source web application
framework written in Ruby that closely follows the Model-View-Controller (MVC) architecture. The
concept of minimal configuration has been built-in to the framework.

For instance, Rails provides its own ActiveRecord7 library that deals with mappings between a class
and a table in the database. By convention, the table name is a pluralized form of the class name.
Thus, the class Post will have a table called Posts. Rails also handles peculiar words such as sheep
which has the plural form sheep and octopus which has the plural form octopi. For more complex or
legacy table names such as ShopInventory, the user would have to configure the mapping
between the table name and class name.

The database mapping convention is just one facet of the Convention over Configuration pattern in
Rails. The pattern is also prevalent in the URL dispatcher in Rails. For further information, readers

should consult the documentation for the Rails framework10.

Spring MVC framework. The URL Mapper in Spring12 uses the Convention over Configuration
pattern to map URLS to the correct Controller. A Controller object in the Spring framework

follows the Page Controller9 pattern and is in charge of handling a request for a specific page or
action on a web site. For instance, a request for mywebsite.com/accounts will automatically call the

AccountsController object. The underlying convention13 is to use the word after the main URL
(accounts), capitalize it, and append the word “Controller” to it. The resulting name,
AccountsController, is the name of the class that we will forward the URL request to.

Unit testing. The JUnit6 testing framework (part of the XUnit testing frameworks) by Erich Gamma
and Kent Beck make use of conventions to simplify the creation of unit tests. Each method that the
developer wants to test is prepended with the word test. The framework would then use the
reflection properties of the language to locate those methods and execute them. Moreover, the
methods setUp and tearDown are methods that are automatically run before and after each test
method. The names of the functions in the XUnit frameworks are not configured; they are by
convention.

Related works

Convention over Configuration upholds the Don’t Repeat Yourself4 philosophy. When the convention
is clear and practical, there is little need to duplicate the information. Duplicating the information
makes changes hard because the developer has to go to multiple configuration files to make the

changes. Martin Fowler identifies duplicated code as one of the infamous code smells11.

Convention Over Configuration

6

Metadata Mapping8 using reflection is an example of Convention over Configuration for accessing
database tables with objects.

Discussion

A viable addition to Convention over Configuration is using an Attribute-Oriented Programming tool

such as XDoclet16. XDoclet tags can be embedded as metadata before each class declaration in the
source code. When the XDoclet tool is initialized, it goes through the source code and gleans the
XDoclet tags for metadata. Using that information, XML configurations files are auto-generated to
suit the framework.

The advantage is that there is no need to maintain separate XML files for the configuration. The
important metadata is embedded in the code and then extracted to auto-generate the configuration
files. Therefore, the developer has less files to keep track of and never needs to deal directly with
the configuration files.

Even then, XDoclet tags have to be updated manually as well each time the class or method is
refactored (rename or moved). So developers can still end up with inconsistent or invalid
configurations when they use XDoclet to auto-generate the configuration files.

Therefore, use Attribute-Oriented Programming in addition to Convention over Configuration. When
the conventions fail and configurations have to be written, embed those configurations in the code
and use a tool to extract that information and auto-generate the configuration files. That way the
developers have less files to maintain.

References

1 Better, Lighter, Faster Java http://www.oreilly.com/catalog/bfljava/

2 “Convention over Configuration” http://www.dehora.net/journal/2005/11/convention_over_configuration.html

3 Domain-Driven Design, http://domaindrivendesign.org/book/

4 “Don’t Repeat Yourself” http://en.wikipedia.org/wiki/Don’t_repeat_yourself

5 “Hibernate” http://www.hibernate.org/

6 “JUnit” http://junit.sourceforge.net/

7 “P of EAA: Active Record” http://www.martinfowler.com/eaaCatalog/activeRecord.html

8 “P of EAA: Metadata Mapping” http://www.martinfowler.com/eaaCatalog/metadataMapping.html

9 “P of EAA: Page Controller” http://www.martinfowler.com/eaaCatalog/pageController.html

10 “Ruby on Rails” http://www.rubyonrails.org/

11 “Smells To Refactoring” http://wiki.java.net/bin/view/People/SmellsToRefactorings

12 “Spring Framework” http://www.springframework.org/

13 “The Spring Framework – Reference Documentation”

http://static.springframework.org/spring/docs/2.0.x/reference/mvc.html#mvc-coc

14“Three Examples” http://st-www.cs.uiuc.edu/~droberts/evolve.html

15“Works Out of the Box” http://www.laputan.org/selfish/selfish.html#WorksOutOfTheBox

16“XDoclet” http://xdoclet.sourceforge.net/xdoclet/index.html

Written by Nicholas Chen. Last significant update on November 29, 2006

Convention Over Configuration

7

